Cyanide-bridged lanthanide(III)-transition metal extended arrays: Interconversion of one-dimensional arrays from single-strand (type A) to double-strand (type B) structures. Complexes of a new type of single-strand array (type C)

Citation
Jp. Liu et al., Cyanide-bridged lanthanide(III)-transition metal extended arrays: Interconversion of one-dimensional arrays from single-strand (type A) to double-strand (type B) structures. Complexes of a new type of single-strand array (type C), INORG CHEM, 40(12), 2001, pp. 2842-2850
Citations number
18
Categorie Soggetti
Inorganic & Nuclear Chemistry
Journal title
INORGANIC CHEMISTRY
ISSN journal
00201669 → ACNP
Volume
40
Issue
12
Year of publication
2001
Pages
2842 - 2850
Database
ISI
SICI code
0020-1669(20010604)40:12<2842:CLMEAI>2.0.ZU;2-#
Abstract
A series of one-dimensional arrays of lanthanide-transition metal complexes has been prepared and characterized. These complexes, {(DMF) (10)Ln(2)[Ni( CN)(4)](3)}(infinity) crystallize as linear single-strand arrays (structura l type A) (Ln = Sm, 1a; Eu, 2a) or double-strand arrays (structural type B) (Ln = Sm, 1b; Eu, 2b) depending upon the conditions chosen, and they are i nterconvertible. The single-strand type 4 structure can be converted to the double-strand type B structure. When the Ib and 2b type B crystals are com pletely dissolved in DMF, their infrared spectra are identical to the infra red spectra of la and 2a type A crystals dissolved in DMF. These solutions produce type A crystals initially. It is believed that formation of the,typ e A structure is kinetically favored while the type B structure is thermody namically favored for lanthanide-nickel complexes 1 and 2. On the other han d the complex {(DMF) Y-10(2)[Pd(CN)(4)](3)}(infinity), 3, appears to crysta llize only as the double-strand array (type B). The complexes ((DMF) Ce-12( 2)[Ni(CN)(4)](3)}(infinity), 4, and {(DMF)(12)Ce-2[Pd(CN)(4)](3)}(infinity) , 5, crystallize as a new type of single-strand array (structural type C). This structural type is a zigzag chain array. Crystal data for la: triclini c space group P1, a = 10.442(5) Angstrom, b = 10.923(2) Angstrom, c = 15.16 8(3) Angstrom, alpha = 74.02(2)degrees, beta = 83.81(3)degrees, gamma = 82. 91(4)degrees, Z = 2. Crystal data for 1b: triclinic space group P (1) over bar, a = 9.129(2) Angstrom, b = 11.286(6) Angstrom, c = 16.276(7) Angstrom, alpha = 81.40(4)degrees, beta = 77.41(3)degrees, gamma = 83.02(3)degrees, Z = 2. Crystal data fur 2a: triclinic space group P (1) over bar, a 10.467( 1) Angstrom, b = 10.923(1) Angstrom, c = 15.123(1) Angstrom, alpha = 74.24( 1)degrees, beta = 83.61(1)degrees, gamma 83.13(1)degrees, Z = 2. Crystal da ta for 2b: triclinic space group P (1) over bar, a 9.128(1) Angstrom, b = 1 1.271(1)Angstrom, c = 16.227(6) Angstrom, alpha = 81.46(2)degrees, beta = 7 7.43(2)degrees, gamma = 82.99(1)degrees Z = 2. Crystal data for 3: triclini c space group P (1) over bar, a = 9.251(3) Angstrom, b = 11.193(4) Angstrom , c 16.388(4) Angstrom, or 81.46(2)degrees, beta = 77.18(2)degrees, gamma = 83.24(3)degrees, Z = 2. Crystal data for 4: triclinic space group P (1) ov er bar, a = 11.279(1) Angstrom, b = 12.504(1) Angstrom, c = 13.887(1) Angst rom, alpha = 98.68(1)degrees, beta = 108.85(1)degrees, gamma = 101.75(1)deg rees Z = 2. Crystal data for 5: triclinic space group P (1) over bar, a = 1 1.388(3) Angstrom, b = 12.614(5) Angstrom, c = 13.965(4) Angstrom, alpha = 97.67(3)degrees, beta = 109.01(2)degrees, gamma = 101.93(2)degrees Z = 2.