Effect of acetate, citrate, and lactate incorporation on distribution of cadmium and copper chemical forms in soil

Citation
I. Ahumada et al., Effect of acetate, citrate, and lactate incorporation on distribution of cadmium and copper chemical forms in soil, COMM SOIL S, 32(5-6), 2001, pp. 771-785
Citations number
20
Categorie Soggetti
Environment/Ecology
Journal title
COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS
ISSN journal
00103624 → ACNP
Volume
32
Issue
5-6
Year of publication
2001
Pages
771 - 785
Database
ISI
SICI code
0010-3624(2001)32:5-6<771:EOACAL>2.0.ZU;2-3
Abstract
Some organic acids of low molecular weight, generated through breakdown of giant wastes or root exudation, increase the solubilization of heavy metals , such as cadmium (Cd) and copper (Cu) through complexation reactions and m ay affect the distribution of their chemical forms in soil. By using natura l soil and soil spiked with Cd or Cu, the effect of acetate, citrate, and l actate incorporation on the solubilization of these metals and the distribu tion of their chemical forms was assessed. To this end, four concentration levels of organic acids were incorporated to soil: 0, 0.4, 0.8, and 1.6 mM at constant ionic strength in 0.02 M potassium chloride (KCI) at pH 5.5 at a soil to solution ratio of 1:20. After 24 h equilibrium, the supernatant w as separated and used to determine the concentration of organic acid not re tained by soil through the technique of Zone Capillary Electrophoresis and the metal concentration through inductively coupled plasma-mass spectrometr y (ICP-MS). The residue was fractionated to determine Cd and Cu chemical fo rms through a sequential extraction method of five steps. Results showed th at acetate and lactate retention is higher in non-sterilized soils which wo uld indicate that anion retention would partly correspond to consumption by microorganisms rather than to anion adsorption by soil particles. It was a lso found that a higher metal content has a negative effect on acetate rete ntion. The presence of lactate and citrate increases the solubility of both metals, and treatment with these acids in some cases affect the distributi on of their chemical forms. Acetate incorporation increased the amount of C u associated to organic matter, and the presence of citrate affected the fr actions of exchangeable Cu, carbonate, and associated to manganese oxides. The fraction of both metals associated to iron oxides was the least affecte d by the incorporation of organic acid anions.