A canonical direct summand of the K-theory of non-exceptional rings of algebraic integers

Authors
Citation
H. Hamraoui, A canonical direct summand of the K-theory of non-exceptional rings of algebraic integers, CR AC S I, 332(11), 2001, pp. 957-962
Citations number
14
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
332
Issue
11
Year of publication
2001
Pages
957 - 962
Database
ISI
SICI code
0764-4442(20010601)332:11<957:ACDSOT>2.0.ZU;2-V
Abstract
Let R be a ring of algebraic integers, non-exceptional in the sense of [10] . Harris and Segal have given in [10] residue fields k of R such that the c anonical morphism BGL(R)(+) --> BGL(k)(+) has homotopy sections after local isation at 2. In [5], Dwyer, Friedlander and Mitchell proved that Harris-Se gal sections are homotopic if root -1 is an element of R. In this Note, we extend this result to the case where root -1 is not an element of R. (C) 20 01 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.