NEWTON POLYGONS AND SINGULAR POINTS OF RE AL POLYNOMIAL VECTOR-FIELDS

Citation
I. Itenberg et E. Shustin, NEWTON POLYGONS AND SINGULAR POINTS OF RE AL POLYNOMIAL VECTOR-FIELDS, Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 319(9), 1994, pp. 963-968
Citations number
9
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
07644442
Volume
319
Issue
9
Year of publication
1994
Pages
963 - 968
Database
ISI
SICI code
0764-4442(1994)319:9<963:NPASPO>2.0.ZU;2-X
Abstract
We classify collections of singular points of generic polynomial vecto r fields of a given degree in the real plane. The answer is that the u pper bounds to the number of singularities and to the total index are the only restrictions. Our solution is based on the Viro method of glu ing of polynomials, which allows to reduce the singularity theory prob lem to a combinatorial question on triangulations of Newton polygons.