The hyperpolarization-activated current I-f in ventricular myocytes of non-transgenic and beta(2)-adrenoceptor overexpressing mice

Citation
Em. Graf et al., The hyperpolarization-activated current I-f in ventricular myocytes of non-transgenic and beta(2)-adrenoceptor overexpressing mice, N-S ARCH PH, 364(2), 2001, pp. 131-139
Citations number
37
Categorie Soggetti
Pharmacology & Toxicology
Journal title
NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY
ISSN journal
00281298 → ACNP
Volume
364
Issue
2
Year of publication
2001
Pages
131 - 139
Database
ISI
SICI code
0028-1298(200108)364:2<131:THCIIV>2.0.ZU;2-#
Abstract
In transgenic mice (TG4) overexpressing the human beta2-adrenoceptor (beta (2)-AR), unoccupied receptors are supposed to activate spontaneously the si gnalling cascade, leading to enhanced levels of cAMP. This second messenger shifts activation curves of the hyperpolarization-activated current I-f to wards less negative potentials. Here, we characterize I-f of ventricular my ocytes from non-transgenic littermate (LM) and TG4 mice and investigate whe ther I-f is modulated by spontaneous beta (2)-AR signalling. I-f was activated in whole-cell voltage-clamp experiments during test steps ranging from -65 mV to -135 mV (holding potential: -55 mV; 36 degreesC). I n TG4 the maximum amplitude was fivefold larger than in LM myocytes (-1.10 +/-0.11 pA/pF vs. -0.22 +/-0.04 pA/pF at -135 mV), and the potential for ha lf-maximum I-f current V-10.5) was less negative (-100.5 +/-1.0 mV in TG4 v s. -108.4 +/-2.6 mV in LM). ((-)-Isoproterenol (1 muM) shifted V10.5 of LM myocytes by 10.4 mV towards less negative potentials but had no significant effect in TG4. However, the inverse beta2-AR agonist ICI 118,551 (300 nM) shifted V-10.5 of TG4 myocytes to values observed in LM under control condi tions, suggesting a relation to spontaneously active beta (2)-ARs. Enhanced expression of hyperpolarization-activated and cyclic nucleotide gated chan nels (HCN) could contribute to increased maximum I-f amplitude in TG4 myocy tes. Semi-quantitative RT-PCR analysis demonstrated a 1.8-fold elevation of HCN4 mRNA and no significant change for HCN2 mRNA in TG4 ventricle. Cardia c hypertrophy was not detected in TG4 mice investigated here. We conclude that spontaneous beta (2)-AR signalling in hearts of TG4 mice s hifts If current-voltage relation towards less negative potentials. Increas ed maximum If amplitude in TG4 myocytes is in line with enhanced expression of HCN channels. Both mechanisms could contribute to larger inward current at physiological diastolic potentials.