Hankel operators in the Bergman space and Schatten p-classes: The case 1 <p < 2

Authors
Citation
Jb. Xia, Hankel operators in the Bergman space and Schatten p-classes: The case 1 <p < 2, P AM MATH S, 129(12), 2001, pp. 3559-3567
Citations number
6
Categorie Soggetti
Mathematics
Journal title
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN journal
00029939 → ACNP
Volume
129
Issue
12
Year of publication
2001
Pages
3559 - 3567
Database
ISI
SICI code
0002-9939(2001)129:12<3559:HOITBS>2.0.ZU;2-A
Abstract
K. Zhu proved in Amer. J. Math. 113 (1991), 147-167, that, for 2 less than or equal to p < <infinity>, the Hankel operators H-f and H-(f) over bar on the Bergman space belong to the Schatten class C-p if and only if the mean oscillation MO(f)(z) = {<(<vertical bar>f \ (2))over tilde>(z) - \(f) over tilde (z)\ (2)}(1/2) belongs to L-p (D,(1 - \z \ (2))(-2)dA(z)). In this pa per we prove that the same result also holds when 1 < p < 2.