Inverse problems for partition functions

Authors
Citation
Yf. Yang, Inverse problems for partition functions, CAN J MATH, 53(4), 2001, pp. 866-896
Citations number
25
Categorie Soggetti
Mathematics
Journal title
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES
ISSN journal
0008414X → ACNP
Volume
53
Issue
4
Year of publication
2001
Pages
866 - 896
Database
ISI
SICI code
0008-414X(200108)53:4<866:IPFPF>2.0.ZU;2-U
Abstract
Let p(w)(n) be the weighted partition function defined by the generating fu nction Sigma (infinity)(n=0) p(w)(n)x(n) = Pi (infinity)(m=1) (1 - x(m))(-w (m)), where w(m) is a non-negative arithmetic function. Let P-w(u) = Sigma (n less than or equal tou) p(w)(n) and N-w(u) = Sigma (n less than or equal tou) w(n) be the summatory functions for p(w)(n) and w(n), respectively. G eneralizing results of G. A. Freiman and E. E. Kohlbecker, we show that, fo r a large class of functions Phi (u) and lambda (u), an estimate for P-w(u) of the form log P-w(u) = Phi (u){1 + Ou(1/lambda (u)) } (u --> infinity) i mplies an estimate for N-w(u) of the form N-w(u) = Phi* (u){1 + O (1/log la mbda (u)) } (u --> infinity) with a suitable function Phi* (u) defined in t erms of Phi (u). We apply this result and related results to obtain charact erizations of the Riemann Hypothesis and the Generalized Riemann Hypothesis in terms of the asymptotic behavior of certain weighted partition function s.