An exactly solvable coupled channel scattering problem with SO(3, 1) symmet
ry is presented describing the helicity scattering of a particle with spin
s. It is shown that the coupled channel wavefunction is a matrix-valued fun
ction with definite group theoretical properties. The scattering phase shif
ts are calculated for the special values of s = (1)/(2), 1 and (3)/(2) and
the result for general s is conjectured. It is also demonstrated that for a
n algebraic description of this coupled channel problem both of the indepen
dent Casimir operators are needed.