Quasi-norm a priori and a posteriori error estimates for the nonconformingapproximation of p-Laplacian

Authors
Citation
Wb. Liu et Nn. Yan, Quasi-norm a priori and a posteriori error estimates for the nonconformingapproximation of p-Laplacian, NUMER MATH, 89(2), 2001, pp. 341-378
Citations number
29
Categorie Soggetti
Mathematics
Journal title
NUMERISCHE MATHEMATIK
ISSN journal
0029599X → ACNP
Volume
89
Issue
2
Year of publication
2001
Pages
341 - 378
Database
ISI
SICI code
0029-599X(200108)89:2<341:QAPAAP>2.0.ZU;2-9
Abstract
In this paper., we derive quasi-norm a priori and a posteriori error estima tes for the Crouzeix-Raviart type finite element approximation of the p-Lap lacian. Sharper a priori upper error bounds are obtained. For instance, for sufficiently regular solutions we prove optimal a priori error bounds on t he discretization error in an energy norm when 1 < p less than or equal to 2. We also show that the new a posteriori error estimates provide improved upper and lower bounds on the discretization error. For sufficiently regula r solutions, the a posteriori error estimates are further shown to be equiv alent on the discretization error in a quasi-norm.