Hilbert schemes, separated variables, and D-branes

Citation
A. Gorsky et al., Hilbert schemes, separated variables, and D-branes, COMM MATH P, 222(2), 2001, pp. 299-318
Citations number
51
Categorie Soggetti
Physics
Journal title
COMMUNICATIONS IN MATHEMATICAL PHYSICS
ISSN journal
00103616 → ACNP
Volume
222
Issue
2
Year of publication
2001
Pages
299 - 318
Database
ISI
SICI code
0010-3616(200109)222:2<299:HSSVAD>2.0.ZU;2-K
Abstract
We explain Sklyanin's separation of variables in geometrical terms and cons truct it for Hitchin and Mukai integrable systems. We construct Hilbert sch emes of points on T*Sigma for Sigma = C, C* or elliptic curve, and on C-2/G amma and show that their complex deformations are integrable systems of Cal ogero-Sutherland-Moser type. We present the hyperkahler quotient constructi ons for Hilbert schemes of points on cotangent bundles to the higher genus curves, utilizing the results of Hurtubise, Kronheimer and Nakajima. Finall y we discuss the connections to physics of D-branes and string duality.