Sharp estimates for the arithmetic Nullstellensatz

Citation
T. Krick et al., Sharp estimates for the arithmetic Nullstellensatz, DUKE MATH J, 109(3), 2001, pp. 521-598
Citations number
60
Categorie Soggetti
Mathematics
Journal title
DUKE MATHEMATICAL JOURNAL
ISSN journal
00127094 → ACNP
Volume
109
Issue
3
Year of publication
2001
Pages
521 - 598
Database
ISI
SICI code
0012-7094(20010915)109:3<521:SEFTAN>2.0.ZU;2-U
Abstract
We present sharp estimates for the degree and the height of the polynomials in the Nullstellensatz over the integer ring Z. The result improves previo us work of P. Philippon, C. Berenstein and A. Yger and T. Krick and L. M. P ardo. We also present degree and height estimates of intrinsic type, which depend mainly on the degree and the height of the input polynomial system. As an application we derive an effective arithmetic Nullstellensatz for sparse po lynomial systems. The proof of these results relies heavily on the notion of local height of an affine variety defined over a number field. We introduce this notion and study its basic properties.