Ab initio simulation of ammonia monohydrate (NH3 center dot H2O) and ammonium hydroxide (NH4OH)

Citation
Ad. Fortes et al., Ab initio simulation of ammonia monohydrate (NH3 center dot H2O) and ammonium hydroxide (NH4OH), J CHEM PHYS, 115(15), 2001, pp. 7006-7014
Citations number
48
Categorie Soggetti
Physical Chemistry/Chemical Physics
Journal title
JOURNAL OF CHEMICAL PHYSICS
ISSN journal
00219606 → ACNP
Volume
115
Issue
15
Year of publication
2001
Pages
7006 - 7014
Database
ISI
SICI code
0021-9606(20011015)115:15<7006:AISOAM>2.0.ZU;2-#
Abstract
We report the results of the first pseudopotential plane-wave simulations o f the static properties of ammonia monohydrate phase I (AMH I) and ammonium hydroxide. Our calculated fourth-order logarithmic equation of state, at z ero pressure and temperature, has molar volume, V-0=36.38(3) cm(3) mol(-1), bulk modulus, K-0=9.59(9) GPa, and the first derivative of the bulk modulu s with respect to pressure, K-0(')=5.73(21). Both this and the lattice para meters are in very good agreement with experimental values. The monohydrate transforms, via a solid-state proton transfer reaction, to ammonium hydrox ide (NH4OH) at 5.0(4) GPa. The equation of state of ammonium hydroxide is, V-0=31.82(5) cm(3) mol(-1), K-0=14.78(62) GPa, K-0(')=2.69(48). We calculat e the reaction enthalpy, DeltaH(NH4OH,s --> NH3.H2O,s)=-14.8(5) kJ mol(-1) at absolute zero, and thus estimate the enthalpy of formation, Delta H-f(ci rcle minus)(NH4OH,s)=-356 kJ mol(-1) at 298 K. This result places an upper limit of 84 kJ mol(-1) on the barrier to rotation of the ammonium cation, a nd yields an average hydrogen bond enthalpy of similar to 23 kJ mol(-1). (C ) 2001 American Institute of Physics.