K. Farahmand et A. Grigorash, Complex zeros of trigonometric polynomials with standard normal random coefficients, J MATH ANAL, 262(2), 2001, pp. 554-563
In this paper, we obtain an exact formula for the average density of the di
stribution of complex zeros of a random trigonometric polynomial eta (0) eta (1) cos theta + eta (2) cos2 theta +(...) + eta (n) cos n theta in (0,
2 pi), where the coefficients eta (J) = a(J) + iotab(J), and {a(J)}(J=1)(n)
and {b(J)}(J=1)(n) are sequences of independent normally distributed rando
m variables with mean 0 and variance 1. We also provide the limiting behavi
our of the zeros density function as n tends to infinity. The corresponding
results for the case of random algebraic polynomials are known. (C) 2001 A
cademic Press.