Complex zeros of trigonometric polynomials with standard normal random coefficients

Citation
K. Farahmand et A. Grigorash, Complex zeros of trigonometric polynomials with standard normal random coefficients, J MATH ANAL, 262(2), 2001, pp. 554-563
Citations number
10
Categorie Soggetti
Mathematics
Journal title
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
ISSN journal
0022247X → ACNP
Volume
262
Issue
2
Year of publication
2001
Pages
554 - 563
Database
ISI
SICI code
0022-247X(20011015)262:2<554:CZOTPW>2.0.ZU;2-5
Abstract
In this paper, we obtain an exact formula for the average density of the di stribution of complex zeros of a random trigonometric polynomial eta (0) eta (1) cos theta + eta (2) cos2 theta +(...) + eta (n) cos n theta in (0, 2 pi), where the coefficients eta (J) = a(J) + iotab(J), and {a(J)}(J=1)(n) and {b(J)}(J=1)(n) are sequences of independent normally distributed rando m variables with mean 0 and variance 1. We also provide the limiting behavi our of the zeros density function as n tends to infinity. The corresponding results for the case of random algebraic polynomials are known. (C) 2001 A cademic Press.