We present exact results for the periodic Anderson model for finite Hubbard
interaction 0 < U < infinity on certain restricted domains of the model's
phase diagram, in d = 1 dimension. Decomposing the Hamiltonian into positiv
e semidefinite terms we find two quantum states to be ground states; a comp
letely localized ground state and a non-localized ground state. The ground-
state energy and several ground-state expectation values were calculated.