Gorenstein liaison of divisors on standard determinantal schemes and on rational normal scrolls

Citation
M. Casanellas et Rm. Miro-roig, Gorenstein liaison of divisors on standard determinantal schemes and on rational normal scrolls, J PURE APPL, 164(3), 2001, pp. 325-343
Citations number
22
Categorie Soggetti
Mathematics
Journal title
JOURNAL OF PURE AND APPLIED ALGEBRA
ISSN journal
00224049 → ACNP
Volume
164
Issue
3
Year of publication
2001
Pages
325 - 343
Database
ISI
SICI code
0022-4049(20011108)164:3<325:GLODOS>2.0.ZU;2-B
Abstract
Lot C subset of P-n be an arithmetically Cohen-Macaulay subscheme. In terms of Gorenstein liaison it is natural to ask whether C is in the Gorenstein liaison class of a complete intersection. In this paper, we study the Goren stein liaison classes of arithmetically Cohen-Macaulay divisors on standard determinantal schemes and on rational normal scrolls. As main results, we obtain that if C is an arithmetically Cohen-Macaulay divisor on a "general" arithmetically Cohen-Macaulay surface in P-4 or on a rational normal scrol l surface S subset of P-n, then C is glicci (i.e. it belongs to the Gorenst ein liaison class of a complete intersection). (C) 2001 Elsevier Science B. V. All rights reserved.