We study bunching of permeable steps induced by drift of adatoms. In contra
st to impermeable steps, bunching may occur with step-up drift. When diffus
ion length is short, terrace width between the bunches increases as L propo
rtional to t(beta) with beta approximate to 1/2 through collision and coale
scence. After the power law growth, the system reaches a steady state, wher
e an array of similar bunches coexists with a few single steps on large ter
races. If the diffusion length is long, the exponent beta increases up to o
ne. (C) 2001 Elsevier Science B,V. All rights reserved.