Estimates for periodic and Dirichlet eigenvalues of the Schrodinger operator with singular potentials

Citation
T. Kappeler et C. Mohr, Estimates for periodic and Dirichlet eigenvalues of the Schrodinger operator with singular potentials, J FUNCT ANA, 186(1), 2001, pp. 62-91
Citations number
18
Categorie Soggetti
Mathematics
Journal title
JOURNAL OF FUNCTIONAL ANALYSIS
ISSN journal
00221236 → ACNP
Volume
186
Issue
1
Year of publication
2001
Pages
62 - 91
Database
ISI
SICI code
0022-1236(20011020)186:1<62:EFPADE>2.0.ZU;2-Q
Abstract
In this paper, the periodic and the Dirichlet problems for the Schrodinger operator -(d(2)/dx(2))+V are studied for singular, complex-valued potential s V in the Sobolev space H-per(-alpha)[0, 1] (0 less than or equal to alpha < 1). The following results are shown: (1) The periodic spectrum consists of a sequence (lambda (k))(k greater tha n or equal to0) of complex eigenvalues, satisfying the asymptotics (for any epsilon > 0) l(2n-1), lambda (2) = n(2)pi (2) + (V) over cap (0) +/- root(V) over cap(-2 n) (V) over cap (2n) + O(n(3 alpha /2-1/2+epsilon)), where (V) over cap (k) denote the Fourier coefficients of V. (2) The Dirichlet spectrum consists of a sequence (mu (n))(n greater than o r equal to1) of complex eigenvalues satisfying the asymptotics (for any eps ilon > 0) mu (n) = n(2)pi (2) + <(Vover cap>(0) - (V) over cap(-2n) + (V) over cap (2 n)/2 + O(n(2 alpha -1 + epsilon)). (C) 2001 Academic Press.