Algebraic aspects of the discrete KP hierarchy

Citation
R. Felipe et F. Ongay, Algebraic aspects of the discrete KP hierarchy, LIN ALG APP, 338, 2001, pp. 1-17
Citations number
5
Categorie Soggetti
Mathematics
Journal title
LINEAR ALGEBRA AND ITS APPLICATIONS
ISSN journal
00243795 → ACNP
Volume
338
Year of publication
2001
Pages
1 - 17
Database
ISI
SICI code
0024-3795(20011115)338:<1:AAOTDK>2.0.ZU;2-B
Abstract
We discuss some algebraic properties of the so-called discrete KP hierarchy , an integrable system defined on a space of infinite matrices. We give an algebraic proof of the complete integrability of the hierarchy, which we ac hieve by means of a factorization result for infinite matrices, that extend s a result of M. Adler and P. Van Moerbeke [Commun. Math. Plays. 203 (1999) 185; 207 (1999) 589] for the case of (semi-infinite) moment matrices, and that we call a Borel decomposition. (C) 2001 Elsevier Science Inc. All righ ts reserved.