Maximum modulus sets and Segre convexity

Citation
G. Coeure et P. Honvault, Maximum modulus sets and Segre convexity, MATH NACHR, 230, 2001, pp. 37-43
Citations number
9
Categorie Soggetti
Mathematics
Journal title
MATHEMATISCHE NACHRICHTEN
ISSN journal
0025584X → ACNP
Volume
230
Year of publication
2001
Pages
37 - 43
Database
ISI
SICI code
0025-584X(2001)230:<37:MMSASC>2.0.ZU;2-B
Abstract
Let E be a totally real, analytic, n-dimensional manifold, foliated by anal ytic interpolation submanifolds of codimension 1, in the analytic boundary of a Segre-convex domain in C-n. Given a canonical defining function of the boundary of Omega in a point 0 of E : Im z(1) + R [Re z(1), z ', (z) over bar '] = 0. If all the odd exponents in the decomposition of R in irreducib le factors, at 0, are greater than 1 then R greater than or equal to 0 and E is locally contained in a maximum modulus set.