A posteriori error estimates for general numerical methods for Hamilton-Jacobi equations. Part I: The steady state case

Citation
S. Albert et al., A posteriori error estimates for general numerical methods for Hamilton-Jacobi equations. Part I: The steady state case, MATH COMPUT, 71(237), 2002, pp. 49-76
Citations number
18
Categorie Soggetti
Mathematics
Journal title
MATHEMATICS OF COMPUTATION
ISSN journal
00255718 → ACNP
Volume
71
Issue
237
Year of publication
2002
Pages
49 - 76
Database
ISI
SICI code
0025-5718(2002)71:237<49:APEEFG>2.0.ZU;2-O
Abstract
A new upper bound is provided for the L-infinity-norm of the difference bet ween the viscosity solution of a model steady state Hamilton-Jacobi equatio n, u, and any given approximation, v. This upper bound is independent of th e method used to compute the approximation v; it depends solely on the valu es that the residual takes on a subset of the domain which can be easily co mputed in terms of v. Numerical experiments investigating the sharpness of the a posteriori error estimate are given.