Random Fibonacci sequences

Citation
C. Sire et Pl. Krapivsky, Random Fibonacci sequences, J PHYS A, 34(42), 2001, pp. 9065-9083
Citations number
29
Categorie Soggetti
Physics
Journal title
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
ISSN journal
03054470 → ACNP
Volume
34
Issue
42
Year of publication
2001
Pages
9065 - 9083
Database
ISI
SICI code
0305-4470(20011026)34:42<9065:RFS>2.0.ZU;2-U
Abstract
Solutions to the random Fibonacci recurrence x(n+1) = x(n) +/- betax(n-1) d ecrease (increase) exponentially, x(n) similar to exp(lambdan), for suffici ently small (large) beta. In the limits beta --> 0 and beta --> infinity, w e expand the Lyapunov exponent lambda(beta) in powers of beta and beta (-1) , respectively. For the classical case of beta = 1 we obtain exact non-pert urbative results. In particular, an invariant measure associated with Ricat ti variable r(n) = x(n+1)/x(n) is shown to exhibit plateaux around all rati onal r.