Inequalities for cyclic functions

Citation
H. Alzer et al., Inequalities for cyclic functions, J APPROX TH, 112(2), 2001, pp. 216-225
Citations number
5
Categorie Soggetti
Mathematics
Journal title
JOURNAL OF APPROXIMATION THEORY
ISSN journal
00219045 → ACNP
Volume
112
Issue
2
Year of publication
2001
Pages
216 - 225
Database
ISI
SICI code
0021-9045(200110)112:2<216:IFCF>2.0.ZU;2-V
Abstract
The nth cyclic function is defined by f(n)(z) = (infinity)Sigma (v=0) z(m)/(nv)! (z is an element of C, 2 less th an or equal to n is an element of N). We prove that if k an integer with 1 less than or equal to k less than or e qual to n-1, then ((n-k)!phi ((k))(n)(x)/x(n-k))alpha < phi (n)(x) < ((n-k)!phi ((k))(n)(x)/x (n-k))(beta) holds for all positive real numbers x with the best possible constants alpha = 1 and beta = ((2n-k)(n)). (C) 2001 Academic Press.