Billiards in Finsler and Minkowski geometries

Citation
E. Gutkin et S. Tabachnikov, Billiards in Finsler and Minkowski geometries, J GEOM PHYS, 40(3-4), 2002, pp. 277-301
Citations number
43
Categorie Soggetti
Mathematics
Journal title
JOURNAL OF GEOMETRY AND PHYSICS
ISSN journal
03930440 → ACNP
Volume
40
Issue
3-4
Year of publication
2002
Pages
277 - 301
Database
ISI
SICI code
0393-0440(200201)40:3-4<277:BIFAMG>2.0.ZU;2-7
Abstract
We begin the study of billiard dynamics in Finsler geometry. We deduce the Finsler billiard reflection law from the "least action principle", and exte nd the basic properties of Riemannian and Euclidean billiards to the Finsle r and Minkowski settings, respectively. We prove that the Finsler billiard map is a symplectomorphism, and compute the mean free path of the Finsler b illiard ball. For the planar Minkowski billiard we obtain the min,or equati on, and extend the Mather's non-existence of caustics result. We establish an orbit-to-orbit duality for Minkowski billiards. (C) 2002 Elsevier Scienc e B.V. All rights reserved.