Classification of the Manin triples for complex reductive lie algebras

Authors
Citation
P. Delorme, Classification of the Manin triples for complex reductive lie algebras, J ALGEBRA, 246(1), 2001, pp. 97-174
Citations number
17
Categorie Soggetti
Mathematics
Journal title
JOURNAL OF ALGEBRA
ISSN journal
00218693 → ACNP
Volume
246
Issue
1
Year of publication
2001
Pages
97 - 174
Database
ISI
SICI code
0021-8693(200112)246:1<97:COTMTF>2.0.ZU;2-#
Abstract
We study real and complex Manin triples for a complex reductive Lie algebra g. First, we generalize results of E. Karolinsky (1996, Math. Phys. Anal. Geom 3, 545-563; 1999, Preprint math.QA.9901073) on the classification of L agrangian subalgebras. Then we show that, if g is noncommutative, one can a ttach to each Manin triple in g another one for a strictly smaller reductiv e complex Lie subalgebra of g. This gives a powerful tool for induction. Th en we classify complex Marlin triples in terms of what we call generalized Belavin-Drinfeld data. This generalizes, by other methods, the classificati on of A. Belavin and V. G. Drinfeld of certain r-matrices, i.e., the soluti ons of modified triangle equations for constants (cf. A. Belavin and V. G. Drinfeld, "Triangle Equations and Simple Lie Algebras," Mathematical Physic s Reviews, Vol. 4, pp. 93-165, Harwood Academic, Chur, 1984, Theorem 6.1). We get also results for real Martin triples. In passing, we retrieve a resu lt of A. Panov (1999, Preprint math.QA.9904156) which classifies certain Li e bialgebra structures on a real simple Lie algebra. (C) 2001 Elsevier Scie nce.