Bezout's theorem and Cohen-Macaulay modules

Citation
J. Migliore et al., Bezout's theorem and Cohen-Macaulay modules, MATH Z, 237(2), 2001, pp. 373-394
Citations number
18
Categorie Soggetti
Mathematics
Journal title
MATHEMATISCHE ZEITSCHRIFT
ISSN journal
00255874 → ACNP
Volume
237
Issue
2
Year of publication
2001
Pages
373 - 394
Database
ISI
SICI code
0025-5874(200106)237:2<373:BTACM>2.0.ZU;2-#
Abstract
We define very proper intersections of modules and projective subschemes. I t turns out that equidimensional locally Cohen-Macaulay modules intersect v ery properly if and only if they intersect properly. We prove a Bezout theo rem for modules which meet very properly. Furthermore, we show for equidime nsional subschemes X and Y: If they intersect properly in an arithmetically Cohen-Macaulay subscheme of positive dimension then X and Y are arithmetic ally Cohen-Macaulay. The module version of this result implies splitting cr iteria for reflexive sheaves.