Parabolic subgroups and representations of branch groups

Citation
L. Bartholdi et Ri. Grigorchuk, Parabolic subgroups and representations of branch groups, CR AC S I, 332(9), 2001, pp. 789-794
Citations number
17
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
332
Issue
9
Year of publication
2001
Pages
789 - 794
Database
ISI
SICI code
0764-4442(20010501)332:9<789:PSAROB>2.0.ZU;2-C
Abstract
Let G be a branch group (in the sense of [9]) acting on a tree J. A parabol ic subguop P is the stabilizer of an infinite geodesic ray in J. We denote by rho (G/P) the associated quasi-regular representation. If G is discrete, these representations are irreducible, but if G is profin ite, they split as a direct sum of finite-dimensional representations rho ( G/Pn+1) circle minus rho (G/Pn), where P-n, is the stabilizer of a level-n vertex in J. For a few concrete examples (notably a virtually torsion-free branch group) , we completely split rho (G)/P-n in irreducible componpnrs; (G, P-n) and ( G, P) are Gelfand pairs (producing abelian Hecke algebra). (C) 2001 Academi c des sciences/Editions scientifiques et medicales Elsevier SAS.