L-1 decay properties for a semilinear parabolic system

Authors
Citation
L. Amour et T. Raoux, L-1 decay properties for a semilinear parabolic system, ISR J MATH, 123, 2001, pp. 157-177
Citations number
12
Categorie Soggetti
Mathematics
Journal title
ISRAEL JOURNAL OF MATHEMATICS
ISSN journal
00212172 → ACNP
Volume
123
Year of publication
2001
Pages
157 - 177
Database
ISI
SICI code
0021-2172(2001)123:<157:LDPFAS>2.0.ZU;2-L
Abstract
This article is concerned with the decay property in the L-1 norm as t --> infinity of the nonnegative solutions of the initial value problem in R-n { u(t) = Deltau + u \ delv \ (q) v(t) = Deltav + v \ delu \ (P) for different values of the parameters p, q greater than or equal to 1 and when mu, v < 0. If pq > (inf(p,q))/(n=1) + (n + 2)/(n + 1) then lim(t -->+infinity) \ \u(t) + v(t)\ \ (lambda) > 0 and when p,g < (inf(p,q))/(n+1) + (n + 2)/(n + 1) then lim(t<right arrow>+infinity) \ \u(t) + v(t)\ \ (1) = 0.