A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations

Citation
I. Babuska et S. Ohnimus, A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations, COMPUT METH, 190(35-36), 2001, pp. 4691-4712
Citations number
27
Categorie Soggetti
Mechanical Engineering
Journal title
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
ISSN journal
00457825 → ACNP
Volume
190
Issue
35-36
Year of publication
2001
Pages
4691 - 4712
Database
ISI
SICI code
0045-7825(2001)190:35-36<4691:APEEFT>2.0.ZU;2-Y
Abstract
In this paper, three a posteriori error estimators of the error in the semi discrete finite element solution (discrete in space and continuous in time) of parabolic partial differential equations are analyzed. This approach is based on a posteriori error estimators for the elliptic PDEs. It is proven that guaranteed (resp. asymptotically exact) a posteriori error estimator for the elliptic problem yields the guaranteed (resp. asymptotically exact) estimator for the parabolic problem. (C) 2001 Elsevier Science B.V. All ri ghts reserved.