O. Hudec et J. Plavka, COST-TO-TIME RATIO PROBLEM FOR (0,1)-MATRICES, MONGE-MATRICES AND CIRCULANT MATRICES, Zeitschrift fur angewandte Mathematik und Mechanik, 77, 1997, pp. 575-576
Let two nxn matrices be given, namely matrices A = (a(ij)) and T = (t(
ij)). For a cyclic permutation sigma = (i(1), i(2),..., i(k)) of a sub
set of N = {1, 2,..., n} we define mu(A;T) (sigma), the cost-to-time r
atio weight of sigma, as (a(i1i2)+...+a(iki1))/(t(i1i2)+...+t(iki1)).
This paper presents procedures for finding lambda(A; T) = max(sigma)mu
(A;T)(sigma), the maximum cost-to-time ratio weight of the matrices A
and T for cases when A, T be (0, 1)- matrices and A be Monge resp. cir
culant matrix, T with 1-entries.