BOLTZMANN-EQUATION WITH INFINITE ENERGY - RENORMALIZED SOLUTIONS AND DISTRIBUTIONAL SOLUTIONS FOR SMALL INITIAL DATA AND INITIAL DATA CLOSETO A MAXWELLIAN

Citation
S. Mischler et B. Perthame, BOLTZMANN-EQUATION WITH INFINITE ENERGY - RENORMALIZED SOLUTIONS AND DISTRIBUTIONAL SOLUTIONS FOR SMALL INITIAL DATA AND INITIAL DATA CLOSETO A MAXWELLIAN, SIAM journal on mathematical analysis, 28(5), 1997, pp. 1015-1027
Citations number
20
Categorie Soggetti
Mathematics,Mathematics
ISSN journal
00361410
Volume
28
Issue
5
Year of publication
1997
Pages
1015 - 1027
Database
ISI
SICI code
0036-1410(1997)28:5<1015:BWIE-R>2.0.ZU;2-M
Abstract
We prove new existence results for the Boltzmann equation with an init ial data with infinite energy, In the framework of renormalized soluti ons we assume (\x\(alpha) + \x - v\(2)) f(0) is an element of L-1 inst ead of (\x\(2) + \v\(2)) f(0) is an element of L-1, and we show new a priori estimates. In the framework of distributional solutions we trea t small initial data compared to a Maxwellian of the type exp(-\x -v\( 2)/2). We also treat initial data close enough to such a Maxwellian. H ence, our theory does not require that the initial data decrease in bo th variables x and v.