CONCAVITY OF WEIGHTED ARITHMETIC MEANS WITH APPLICATIONS

Citation
A. Berenstein et A. Vainshtein, CONCAVITY OF WEIGHTED ARITHMETIC MEANS WITH APPLICATIONS, Archiv der Mathematik, 69(2), 1997, pp. 120-126
Citations number
11
Categorie Soggetti
Mathematics, General",Mathematics
Journal title
ISSN journal
0003889X
Volume
69
Issue
2
Year of publication
1997
Pages
120 - 126
Database
ISI
SICI code
0003-889X(1997)69:2<120:COWAMW>2.0.ZU;2-D
Abstract
We prove that the following three conditions together imply the concav ity of the sequence {(i=0)Sigma(n) alpha(i) beta(i)/(i=0)Sigma(n) alph a(i)}: concavity of {beta(n)}, log-conavity of {alpha(n)} and nonincre asing of -1))/(alpha(n-1)/alpha(n)-alpha(n-2)/alpha(n-1))}. As a conse quence we get necessary and sufficient conditions for the concavity of the sequences {Sn-1(x)/S-n(x)} and {S'(n)(x)/S-n(x)} for any nonnegat ive x, where S-n(x) is the nth partial sum of a power series with arbi trary positive coefficients {alpha(n)}.