OXIDATION OF PHENOL OVER A TRANSITION-METAL OXIDE CATALYST IN SUPERCRITICAL WATER

Authors
Citation
M. Krajnc et J. Levec, OXIDATION OF PHENOL OVER A TRANSITION-METAL OXIDE CATALYST IN SUPERCRITICAL WATER, Industrial & engineering chemistry research, 36(9), 1997, pp. 3439-3445
Citations number
27
Categorie Soggetti
Engineering, Chemical
ISSN journal
08885885
Volume
36
Issue
9
Year of publication
1997
Pages
3439 - 3445
Database
ISI
SICI code
0888-5885(1997)36:9<3439:OOPOAT>2.0.ZU;2-0
Abstract
The oxidation kinetics of phenol in supercritical water was examined i n the presence of a solid catalyst consisting of supported copper, zin c, and cobalt oxides in an integrally operated fixed-bed reactor. For the conditions studied the rate of phenol disappearance was found to b e well described by the Langmuir-Hinshelwood kinetic formulation, whic h accounts for the equilibrium adsorption of phenol and for dissociati ve oxygen adsorption processes to the different types of active sites and a bimolecular surface reaction between adsorbed species on adjacen t active catalyst sites to be the controlling step. The apparent activ ation energy and the heat of phenol adsorption in the temperature rang e 400-440 degrees C were found to be 109 and 24 kJ/mol, respectively. The products identified in the effluent include dimers, single-ring co mpounds, organic acids, and gaseous end pro ducts. The involvement of a homogeneous-heterogeneous free-radical mechanism is indicated by the intermediates formed; The product distribution suggests that the cata lyst is much more selective on the para isomer of phenoxy radical. Com paring the wide spectrum of organic acids formed during the noncatalyt ic phenol oxidation in supercritical water with only formic and acetic acid found in the effluent of catalytic process, it may be concluded that the intermediates adsorbed on the catalyst surface are probably r apidly oxidized to the low molecular weight acids.