SUPERRESOLUTION RATES IN PROKHOROV METRIC

Citation
P. Doukhan et F. Gamboa, SUPERRESOLUTION RATES IN PROKHOROV METRIC, Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 318(12), 1994, pp. 1143-1148
Citations number
12
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
07644442
Volume
318
Issue
12
Year of publication
1994
Pages
1143 - 1148
Database
ISI
SICI code
0764-4442(1994)318:12<1143:SRIPM>2.0.ZU;2-1
Abstract
Consider the problem of recovering a probability measure supported by the compact set [0, 1], when the available measurements concern only s ome of its PHI-moments (PHI being an R(k) valued continuous function o n [0, 1]). When the true PHI-moment c lies on the boundary of the conv ex hull of PHI ([0, 1]), generalizing the results of [3], we construct a small Lebesgue measure set R(alpha, delta, (epsilon)) such that any probability measure A satisfying parallel-to integral[0, 1] PHI (x) d mu (x) - c parallel-to epsilon is almost concentrated on R(alpha, delt a (epsilon). When PHI is assumed to be a punctual T-system, the descri ption of R(alpha, delta (epsilon) allows the evaluation of the Prokhor ov radius of the set {mu : parallel-to integral[0, 1] PI (x) dmu (x) - c parallel-to less-than-or-equal-to epsilon}.