Citation: Op. Bruno et F. Reitich, BOUNDARY-VARIATION SOLUTIONS FOR BOUNDED-OBSTACLE SCATTERING PROBLEMSIN 3 DIMENSIONS, The Journal of the Acoustical Society of America, 104(5), 1998, pp. 2579-2583
Citation: Op. Bruno et al., THE OVERALL ELASTIC ENERGY OF POLYCRYSTALLINE MARTENSITIC SOLIDS, Journal of the mechanics and physics of solids, 44(7), 1996, pp. 1051-1101
Citation: Op. Bruno et P. Laurence, EXISTENCE OF 3-DIMENSIONAL TOROIDAL MHD EQUILIBRIA WITH NONCONSTANT PRESSURE, Communications on pure and applied mathematics, 49(7), 1996, pp. 717-764
Citation: Op. Bruno et F. Reitich, MAXWELL EQUATIONS IN A NONLINEAR KERR MEDIUM, Proceedings - Royal Society. Mathematical and physical sciences, 447(1929), 1994, pp. 65-76
Citation: Op. Bruno et F. Reitich, APPROXIMATION OF ANALYTIC-FUNCTIONS - A METHOD OF ENHANCED CONVERGENCE, Mathematics of computation, 63(207), 1994, pp. 195-213
Citation: Ph. Leo et al., TRANSIENT HEAT-TRANSFER EFFECTS ON THE PSEUDOELASTIC BEHAVIOR OF SHAPE-MEMORY WIRES, Acta metallurgica et materialia, 41(8), 1993, pp. 2477-2485
Citation: Op. Bruno et F. Reitich, NUMERICAL-SOLUTION OF DIFFRACTION PROBLEMS - A METHOD OF VARIATION OFBOUNDARIES, Journal of the Optical Society of America. A: Optics and image science, 10(6), 1993, pp. 1168-1175
Citation: Op. Bruno et F. Reitich, NUMERICAL-SOLUTION OF DIFFRACTION PROBLEMS - A METHOD OF VARIATION OFBOUNDARIES .3. DOUBLY PERIODIC GRATINGS, Journal of the Optical Society of America. A: Optics and image science, 10(12), 1993, pp. 2551-2562
Citation: Op. Bruno et F. Reitich, NUMERICAL-SOLUTION OF DIFFRACTION PROBLEMS - A METHOD OF VARIATION OFBOUNDARIES .2. FINITELY CONDUCTING GRATINGS, PADE APPROXIMANTS, AND SINGULARITIES, Journal of the Optical Society of America. A: Optics and image science, 10(11), 1993, pp. 2307-2316