Citation: S. Albeverio et al., ON THE SCHRODINGER-EQUATION WITH POTENTIALS WHICH ARE LAPLACE TRANSFORMS OF MEASURES, Potential analysis, 9(1), 1998, pp. 65-82
Citation: Cjk. Batty et al., A QUANTITATIVE ASYMPTOTIC THEOREM FOR CONTRACTION-SEMIGROUPS WITH COUNTABLE UNITARY SPECTRUM, Studia Mathematica, 121(2), 1996, pp. 167-183
Authors:
ALBEVERIO S
DEMONVELBERTHIER AB
BRZEZNIAK Z
Citation: S. Albeverio et al., THE TRACE FORMULA FOR SCHRODINGER-OPERATORS FROM INFINITE-DIMENSIONALOSCILLATORY INTEGRALS, Mathematische Nachrichten, 182, 1996, pp. 21-65
Authors:
ALBEVERIO S
DEMONVELBERTHIER AB
BRZEZNIAK Z
Citation: S. Albeverio et al., STATIONARY-PHASE METHOD IN INFINITE DIMENSIONS BY FINITE-DIMENSIONAL APPROXIMATIONS - APPLICATIONS TO THE SCHRODINGER-EQUATION, Potential analysis, 4(5), 1995, pp. 469-502
Citation: Z. Brzezniak et F. Flandoli, ALMOST SURE APPROXIMATION OF WONG-ZAKAI TYPE FOR STOCHASTIC PARTIAL-DIFFERENTIAL EQUATIONS, Stochastic processes and their applications, 55(2), 1995, pp. 329-358
Citation: S. Albeverio et Z. Brzezniak, OSCILLATORY INTEGRALS ON HILBERT-SPACES AND SCHRODINGER-EQUATION WITHMAGNETIC-FIELDS, Journal of mathematical physics, 36(5), 1995, pp. 2135-2156
Citation: S. Albeverio et al., FUNDAMENTAL SOLUTION OF THE HEAT AND SCHRODINGER-EQUATIONS WITH POINTINTERACTION, Journal of functional analysis, 130(1), 1995, pp. 220-254
Citation: S. Albeverio et al., TIME-DEPENDENT PROPAGATOR WITH POINT INTERACTION, Journal of physics. A, mathematical and general, 27(14), 1994, pp. 4933-4943
Citation: S. Albeverio et Z. Brzezniak, FINITE-DIMENSIONAL APPROXIMATION APPROACH TO OSCILLATORY INTEGRALS AND STATIONARY PHASE IN INFINITE DIMENSIONS, Journal of functional analysis, 113(1), 1993, pp. 177-244