AAAAAA

   
Results: 1-9 |
Results: 9

Authors: Galkowski, K Rogers, E Gramacki, A Gramacki, J Owens, DH
Citation: K. Galkowski et al., Stability and dynamic boundary condition decoupling analysis for a class of 2-D discrete linear systems, IEE P-CIRC, 148(3), 2001, pp. 126-134

Authors: Lin, ZP Lam, J Galkowski, K Xu, SY
Citation: Zp. Lin et al., A constructive approach to stabilizability and stabilization of a class ofnD systems, MULTID SYST, 12(3-4), 2001, pp. 329-343

Authors: Galkowski, K
Citation: K. Galkowski, Minimal state-space realization for a class of linear, discrete, nD, SISO systems, INT J CONTR, 74(13), 2001, pp. 1279-1294

Authors: Galkowski, K
Citation: K. Galkowski, Higher order discretization of 2-D systems, IEEE CIRC-I, 47(5), 2000, pp. 713-722

Authors: Galkowski, K
Citation: K. Galkowski, A perspective on singularity in 2D linear systems, MULTID SYST, 11(1-2), 2000, pp. 83-108

Authors: Galkowski, K Rogers, E Owens, DH
Citation: K. Galkowski et al., New 2D models and a transition matrix for discrete linear repetitive processes (vol 72, pg 1365, 1999), INT J CONTR, 73(4), 2000, pp. 360-360

Authors: Galkowski, K
Citation: K. Galkowski, State-space realizations of MIMO 2D discrete linear systems - Elementary operation and variable inversion approach, INT J CONTR, 73(3), 2000, pp. 242-253

Authors: Galkowski, K Rogers, E Gramacki, A Gramacki, J Owens, DH
Citation: K. Galkowski et al., Higher order discretisation methods for a class of 2-D continuous-discretelinear systems, IEE P-CIRC, 146(6), 1999, pp. 315-320

Authors: Galkowski, K Rogers, E Owens, DH
Citation: K. Galkowski et al., New 2D models and a transition matrix far discrete linear repetitive processes, INT J CONTR, 72(15), 1999, pp. 1365-1380
Risultati: 1-9 |