Citation: T. Ooya et al., Enhanced accessibility of peptide substrate toward membrane-bound metalloexopeptidase by supramolecular structure of polyrotaxane, BIOMACROMOL, 2(1), 2001, pp. 200-203
Citation: T. Ichi et al., Controllable erosion time and profile in poly(ethylene glycol) hydrogels by supramolecular structure of hydrolyzable polyrotaxane, BIOMACROMOL, 2(1), 2001, pp. 204-210
Citation: T. Ikeda et al., Study on the solution properties of thermo-responsive polyrotaxanes with different numbers of cyclic molecules, MACRO CH P, 202(8), 2001, pp. 1338-1344
Authors:
Huh, KM
Ooya, T
Lee, WK
Sasaki, S
Kwon, IC
Jeong, SY
Yui, N
Citation: Km. Huh et al., Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran andalpha-cyclodextrin, MACROMOLEC, 34(25), 2001, pp. 8657-8662
Citation: T. Ooya et al., Synthesis and characterization of an oligopeptide-terminated polyrotaxane as a drug carrier, POLYM ADV T, 11(8-12), 2000, pp. 642-651
Citation: T. Ikeda et al., Inclusion complexation of fractionated alpha-cyclodextrin molecular tube with sodium dodecyl sulfate, POLYM ADV T, 11(8-12), 2000, pp. 830-836
Citation: Km. Huh et al., Synthesis and characterization of dextran grafted with poly(N-isopropylacrylamide-co-N,N-dimethyl-acrylamide), MACRO CH P, 201(5), 2000, pp. 613-619
Citation: T. Ikeda et al., Supramolecular network formation through inclusion complexation of an alpha-cyclodextrin-based molecular tube, MACRO RAPID, 21(17), 2000, pp. 1257-1262
Citation: W. Kamimura et al., Self-complex formation of nicotinamide-modified dextran with carboxymethyldextran using their degradation products, J BIOM SC P, 11(7), 2000, pp. 747-765
Authors:
Watanabe, J
Ooya, T
Park, KD
Kim, YH
Yui, N
Citation: J. Watanabe et al., Preparation and characterization of poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane, J BIOM SC P, 11(12), 2000, pp. 1333-1345
Citation: H. Fujita et al., Synthesis and characterization of a polyrotaxane consisting of beta-cyclodextrins and a poly(ethylene glycol) poly(propylene glycol) triblock copolymer, MACRO CH P, 200(4), 1999, pp. 706-713
Citation: K. Moriyama et al., Pulsatile peptide release from multi-layered hydrogel formulations consisting of poly(ethylene glycol)-grafted and ungrafted dextrans, J BIOM SC P, 10(12), 1999, pp. 1251-1264
Citation: J. Watanabe et al., Effect of acetylation of biodegradable polyrotaxanes on its supramoleculardissociation via terminal ester hydrolysis, J BIOM SC P, 10(12), 1999, pp. 1275-1288
Citation: T. Ooya et N. Yui, Synthesis of theophylline-polyrotaxane conjugates and their drug release via supramolecular dissociation, J CONTR REL, 58(3), 1999, pp. 251-269
Citation: T. Ikeda et al., Regulation of pseudo-polyrotaxane formation between alpha-cyclodextrins and azobenzene-terminated poly(ethylene glycol), POLYM J, 31(8), 1999, pp. 658-663
Citation: H. Fujita et al., Thermally-responsive properties of a polyrotaxane consisting of beta-cyclodextrins and a poly(ethylene glycol)-poly(propylene glycol) triblock-copolymer, POLYM J, 31(11), 1999, pp. 1099-1104
Citation: H. Fujita et al., Thermally induced localization of cyclodextrins in a polyrotaxane consisting of beta-cyclodextrins and poly(ethylene glycol)-poly(propylene glycol) triblock copolymer, MACROMOLEC, 32(8), 1999, pp. 2534-2541