Citation: H. Fujisaka et al., Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field (vol E 63, art. no. 036109, 2001) - art. no. 059903, PHYS REV E, 6305(5), 2001, pp. 9903-9903
Citation: H. Fujisaka et al., Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field - art. no. 036109, PHYS REV E, 6303(3), 2001, pp. 6109
Authors:
Korniss, G
White, CJ
Rikvold, PA
Novotny, MA
Citation: G. Korniss et al., Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field - art. no. 016120, PHYS REV E, 6302(2), 2001, pp. 6120
Citation: G. Brown et al., Langevin simulation of thermally activated magnetization reversal in nanoscale pillars - art. no. 134422, PHYS REV B, 6413(13), 2001, pp. 4422
Authors:
Korniss, G
Toroczkai, Z
Novotny, MA
Rikvold, PA
Citation: G. Korniss et al., From massively parallel algorithms and fluctuating time horizons to nonequilibrium surface growth, PHYS REV L, 84(6), 2000, pp. 1351-1354
Citation: Pa. Rikvold et M. Kolesik, Analytic approximations for the velocity of field-driven Ising interfaces, J STAT PHYS, 100(1-2), 2000, pp. 377-403
Authors:
Novotny, MA
Rikvold, PA
Kolesik, M
Townsley, DM
Ramos, RA
Citation: Ma. Novotny et al., Simulations of metastable decay in two- and three-dimensional models with microscopic dynamics, J NON-CRYST, 274(1-3), 2000, pp. 356-363
Citation: G. Brown et al., Micromagnetic simulations of thermally activated magnetization reversal ofnanoscale magnets, J APPL PHYS, 87(9), 2000, pp. 4792-4794
Citation: Xk. Kou et al., Simulation of magnetization switching in biaxial single-domain ferromagnetic particles, IEEE MAGNET, 36(1), 2000, pp. 231-240
Citation: Sw. Sides et al., Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition, PHYS REV E, 59(3), 1999, pp. 2710-2729
Citation: Ra. Ramos et al., Test of the Kolmogorov-Johnson-Mehl-Avrami picture of metastable decay in a model with microscopic dynamics, PHYS REV B, 59(14), 1999, pp. 9053-9069
Citation: G. Korniss et al., Parallelization of a dynamic Monte Carlo algorithm: A partially rejection-free conservative approach, J COMPUT PH, 153(2), 1999, pp. 488-508
Citation: Sw. Sides et al., Hysteresis loop areas in kinetic Ising models: Effects of the switching mechanism, J APPL PHYS, 83(11), 1998, pp. 6494-6496