Citation: Hm. Ku et al., Exploitation of Arabidopsis-tomato synteny to construct a high-resolution map of the ovate-containing region in tomato chromosome 2, GENOME, 44(3), 2001, pp. 470-475
Citation: E. Van Der Knaap et Sd. Tanksley, Identification and characterization of a novel locus controlling early fruit development in tomato, THEOR A GEN, 103(2-3), 2001, pp. 353-358
Authors:
Monforte, AJ
Friedman, E
Zamir, D
Tanksley, SD
Citation: Aj. Monforte et al., Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization, THEOR A GEN, 102(4), 2001, pp. 572-590
Citation: Tc. Nesbitt et Sd. Tanksley, fw2.2 directly affects the size of developing tomato fruit, with secondaryeffects on fruit number and photosynthate distribution, PLANT PHYSL, 127(2), 2001, pp. 575-583
Citation: Z. Lippman et Sd. Tanksley, Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium andL-esculentum var. giant heirloom, GENETICS, 158(1), 2001, pp. 413-422
Authors:
van der Hoeven, RS
Monforte, AJ
Breeden, D
Tanksley, SD
Steffens, JC
Citation: Rs. Van Der Hoeven et al., Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L-hirsutum, PL CELL, 12(11), 2000, pp. 2283-2294
Authors:
Brommonschenkel, SH
Frary, A
Frary, A
Tanksley, SD
Citation: Sh. Brommonschenkel et al., The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi, MOL PL MICR, 13(10), 2000, pp. 1130-1138
Citation: Aj. Monforte et Sd. Tanksley, Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L-esculentum genetic background: A tool for gene mapping and gene discovery, GENOME, 43(5), 2000, pp. 803-813
Authors:
Fulton, TM
Grandillo, S
Beck-Bunn, T
Fridman, E
Frampton, A
Lopez, J
Petiard, V
Uhlig, J
Zamir, D
Tanksley, SD
Citation: Tm. Fulton et al., Advanced backcross QTL analysis of a Lycopersicon esculentum x Lycopersicon parviflorum cross, THEOR A GEN, 100(7), 2000, pp. 1025-1042
Citation: Aj. Monforte et Sd. Tanksley, Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield, THEOR A GEN, 100(3-4), 2000, pp. 471-479
Citation: S. Doganlar et al., Identification and molecular mapping of loci controlling fruit ripening time in tomato, THEOR A GEN, 100(2), 2000, pp. 249-255
Citation: Hm. Ku et al., Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny, P NAS US, 97(16), 2000, pp. 9121-9126
Citation: Tj. Vision et al., Selective mapping: A strategy for optimizing the construction of high-density linkage maps, GENETICS, 155(1), 2000, pp. 407-420
Authors:
Hanson, PM
Bernacchi, D
Green, S
Tanksley, SD
Muniyappa, V
Padmaja, S
Chen, HM
Kuo, G
Fang, D
Chen, JT
Citation: Pm. Hanson et al., Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line, J AM S HORT, 125(1), 2000, pp. 15-20
Citation: S. Grandillo et al., Identifying the loci responsible for natural variation in fruit size and shape in tomato, THEOR A GEN, 99(6), 1999, pp. 978-987
Authors:
Diwan, N
Fluhr, R
Eshed, Y
Zamir, D
Tanksley, SD
Citation: N. Diwan et al., Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1, THEOR A GEN, 98(2), 1999, pp. 315-319
Authors:
Bucheli, P
Voirol, E
de la Torre, R
Lopez, J
Rytz, A
Tanksley, SD
Petiard, V
Citation: P. Bucheli et al., Definition of nonvolatile markers for flavor of tomato (Lycopersicon esculentum Mill.) as tools in selection and breeding, J AGR FOOD, 47(2), 1999, pp. 659-664