Authors:
Arnold, A
Markowich, P
Toscani, G
Unterreiter, A
Citation: A. Arnold et al., On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, COMM PART D, 26(1-2), 2001, pp. 43-100
Citation: G. Toscani et C. Villani, On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J STAT PHYS, 98(5-6), 2000, pp. 1279-1309
Citation: Ja. Carrillo et G. Toscani, Asymptotic L-1-decay of solutions of the porous medium equations to self-similarity, INDI MATH J, 49(1), 2000, pp. 113-142
Citation: G. Toscani, Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation, Q APPL MATH, 57(3), 1999, pp. 521-541
Citation: G. Toscani et C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas, J STAT PHYS, 94(3-4), 1999, pp. 619-637
Citation: G. Toscani et C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibriumfor the spatially homogeneous Boltzmann equation, COMM MATH P, 203(3), 1999, pp. 667-706
Citation: Ea. Carlen et al., Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas, COMM MATH P, 199(3), 1999, pp. 521-546