Ca. Klein et Lc. Chu, COMPARISON OF EXTENDED JACOBIAN AND LAGRANGE MULTIPLIER BASED METHODSFOR RESOLVING KINEMATIC REDUNDANCY, Journal of intelligent & robotic systems, 19(1), 1997, pp. 39-54
Citations number
21
Categorie Soggetti
System Science","Computer Science Artificial Intelligence","Robotics & Automatic Control
Several methods have been proposed in the past for resolving the contr
ol of kinematically redundant manipulators by optimizing a secondary c
riterion. The extended Jacobian method constrains the gradient of this
criterion to be in the null space of the Jacobian matrix, while the L
agrange multiplier method represents the gradient as being in the row
space. In this paper, a numerically efficient form of the Lagrange mul
tiplier method is presented and is compared analytically, computationa
lly, and operationally to the extended Jacobian method. This paper als
o presents an improved method for tracking algorithmic singularities o
ver previous work.