AAAAAA

   
Results: 1-18 |
Results: 18

Authors: Deang, J Du, Q Gunzburger, MD
Citation: J. Deang et al., Stochastic dynamics of Ginzburg-Landau vortices in superconductors - art. no. 052506, PHYS REV B, 6405(5), 2001, pp. 2506

Authors: Gunzburger, MD Imanuvilov, OY
Citation: Md. Gunzburger et Oy. Imanuvilov, Optimal control of stationary, low Mach number, highly nonisothermal, viscous flows, ESAIM CO OP, 5, 2000, pp. 477-500

Authors: Gunzburger, MD Lee, J
Citation: Md. Gunzburger et J. Lee, A domain decomposition method for optimization problems for partial differential equations, COMPUT MATH, 40(2-3), 2000, pp. 177-192

Authors: Gunzburger, MD Kim, H Manservisi, S
Citation: Md. Gunzburger et al., On a shape control problem for the stationary Navier-Stokes equations, ESAIM-M MOD, 34(6), 2000, pp. 1233-1258

Authors: Gunzburger, MD Manservisi, S
Citation: Md. Gunzburger et S. Manservisi, The velocity tracking problem for Navier-Stokes flows with boundary control, SIAM J CON, 39(2), 2000, pp. 594-634

Authors: Gunzburger, MD Heinkenschloss, M Lee, HK
Citation: Md. Gunzburger et al., Solution of elliptic partial differential equations by an optimization-based domain decomposition method, APPL MATH C, 113(2-3), 2000, pp. 111-139

Authors: Gunzburger, MD Lee, HC
Citation: Md. Gunzburger et Hc. Lee, A penalty/least-squares method for optimal control problems for first-order elliptic systems, APPL MATH C, 107(1), 2000, pp. 57-75

Authors: Gunzburger, MD Manservisi, S
Citation: Md. Gunzburger et S. Manservisi, Analysis and approximation for linear feedback control for tracking the velocity in Navier-Stokes flows, COMPUT METH, 189(3), 2000, pp. 803-823

Authors: Gunzburger, MD Lee, HK
Citation: Md. Gunzburger et Hk. Lee, An optimization-based domain decomposition method for the Navier-Stokes equations, SIAM J NUM, 37(5), 2000, pp. 1455-1480

Authors: Gunzburger, MD Manservisi, S
Citation: Md. Gunzburger et S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control, SIAM J NUM, 37(5), 2000, pp. 1481-1512

Authors: Du, Q Gunzburger, MD
Citation: Q. Du et Md. Gunzburger, A gradient method approach to optimization-based multidisciplinary simulations and nonoverlapping domain decomposition algorithms, SIAM J NUM, 37(5), 2000, pp. 1513-1541

Authors: Gunzburger, MD Peterson, JS Kwon, H
Citation: Md. Gunzburger et al., An optimization based domain decomposition method for partial differentialequations, COMPUT MATH, 37(10), 1999, pp. 77-93

Authors: Gunzburger, MD Manservisi, S
Citation: Md. Gunzburger et S. Manservisi, The velocity tracking problem for Navier-Stokes flows with bounded distributed controls, SIAM J CON, 37(6), 1999, pp. 1913-1945

Authors: Gunzburger, MD
Citation: Md. Gunzburger, Sensitivities, adjoints and flow optimization, INT J NUM F, 31(1), 1999, pp. 53-78

Authors: Gunzburger, MD Lee, HC
Citation: Md. Gunzburger et Hc. Lee, Analysis and approximation of optimal control problems for first-order elliptic systems in three dimensions, APPL MATH C, 100(1), 1999, pp. 49-70

Authors: Du, Q Gunzburger, MD Lee, HK
Citation: Q. Du et al., Analysis and computation of a mean-field model for superconductivity, NUMER MATH, 81(4), 1999, pp. 539-560

Authors: Gunzburger, MD Hou, LS
Citation: Md. Gunzburger et Ls. Hou, Special issue - Flow control and optimization - Iowa State University and York University, Ames, Iowa - September 1998, INT J C FL, 11(1-2), 1998, pp. 1-1

Authors: Gunzburger, MD Hou, LS Manservisi, S Yan, Y
Citation: Md. Gunzburger et al., Computations of optimal controls for incompressible flows, INT J C FL, 11(1-2), 1998, pp. 181-191
Risultati: 1-18 |