Citation: I. Babuska et S. Ohnimus, A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations, COMPUT METH, 190(35-36), 2001, pp. 4691-4712
Citation: I. Babuska et al., On one approach to a posteriori error estimates for evolution problems solved by the method of lines, NUMER MATH, 89(2), 2001, pp. 225-256
Citation: Ca. Duarte et al., Generalized finite element methods for three-dimensional structural mechanics problems, COMPUT STRU, 77(2), 2000, pp. 215-232
Authors:
Strouboulis, T
Babuska, I
Datta, DK
Copps, K
Gangaraj, SK
Citation: T. Strouboulis et al., A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor, COMPUT METH, 181(1-3), 2000, pp. 261-294
Citation: I. Babuska et Bq. Guo, Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions, NUMER MATH, 85(2), 2000, pp. 219-255
Citation: T. Strouboulis et al., The generalized finite element method: an example of its implementation and illustration of its performance, INT J NUM M, 47(8), 2000, pp. 1401-1417
Citation: T. Strouboulis et al., Guaranteed computable bounds for the exact error in the finite element solution - Part II: bounds for the energy norm of the error in two dimensions, INT J NUM M, 47(1-3), 2000, pp. 427-475
Citation: Km. Liu et I. Babuska, Selections of shape functions for dimensional reduction to Helmholtz's equation, NUMER M P D, 15(2), 1999, pp. 169-190
Citation: S. Adjerid et al., A posteriori error estimation for the finite element method-of-lines solution of parabolic problems, MATH MOD M, 9(2), 1999, pp. 261-286
Citation: I. Babuska et al., Guaranteed computable bounds for the exact error in the finite element solution Part I: One-dimensional model problem, COMPUT METH, 176(1-4), 1999, pp. 51-79
Citation: M. Ainsworth et I. Babuska, Reliable and robust a posteriori error estimation for singularly perturbedreaction-diffusion problems, SIAM J NUM, 36(2), 1999, pp. 331-353
Citation: A. Deraemaeker et al., Dispersion and pollution of the FEM solution for the Helmholtz equation inone, two and three dimensions, INT J NUM M, 46(4), 1999, pp. 471-499